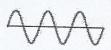

## **WAVES and ENERGY**

DIRECTIONS: As you learn about waves, highlight the answers in the reading before answering the questions.

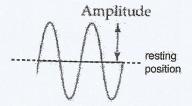

1. On the diagram below, label the amplitude of the wave.



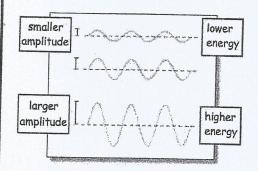
2. A wave with more energy has a

\_\_\_\_\_amplitude.

3. Circle the wave that has more energy.

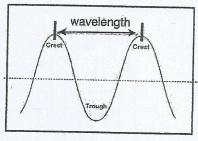






Explain your choice.

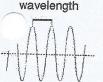
A wave can be described by its amplitude, its wavelength, and its frequency.

The amplitude is how far the particles move away from their rest position. The rest position on the right is represented by the dotted line. This is where there are no disturbances. If a disturbance happens the amplitude increases.




Notice that the amplitude of the wave is half the distance between the highest and the lowest value.

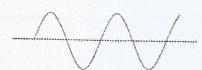



A wave that has more energy will have a larger amplitude. A wave the has less energy will have a smaller amplitude.

To describe how long the wave is you need to know the wavelength. The wavelength is the distance from one point on a wave to an identical point on the next wave.



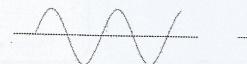
Each wave can have a different length. Some are longer and some are shorter.


shorter wavelength



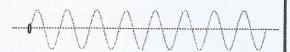
longer wavelength




4. On each diagram below label the wavelength.

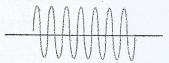


5. DRAW a wave that has a shorter wavelength than the one below.




6. DRAW a wave that has a longer wavelength than the one below.




7. Below represents the amount of waves that passed in 1 second.

About 7 waves in 1 second.



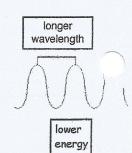
So the frequency would be \_\_\_\_\_ (number) (unit)

8. Both of these diagrams represent the number of waves that occurred in 1 second. Circle the set with the lowest energy.



Explain your choice.

12. Lower frequencies have \_\_\_\_\_ energy. (THINK


Frequency tells you the number of to the wavelength occurs in 1 second. A wave with more energy will have a higher frequency (more waves passing in 1 second).

Frequency is expressed in hertz (Hz).

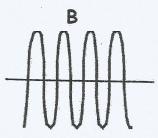
A wave that has more energy will have a shorter wavelength.

shorter wavelength

energy



PRACTICE .....


A MM

13. Which wave has the longest wavelength?

Why did you choose this one?

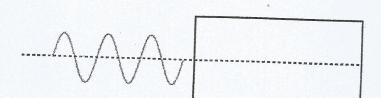
Which wave has the most energy?

AMA



14. Which wave has the larger amplitude?

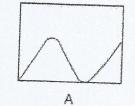
Why did you choose this one?

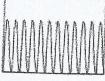

Which wave has the most energy?

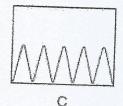
- 15. Which set of waves has .....
  - ....longest wavelength? \_\_\_
  - ....shortest wavelength? \_\_
  - ...higher frequency?
  - ....lowest frequency? \_\_\_\_

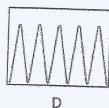
- 16. What is changing?

(amplitude, frequency)


17. Draw a wavelength that has more energy than the one below.





18. What is happening to the energy?


(increasing, decreasing)

Explain your reasoning.

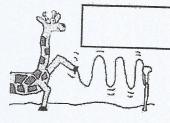


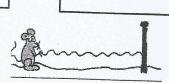


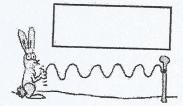


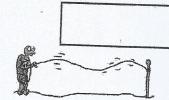


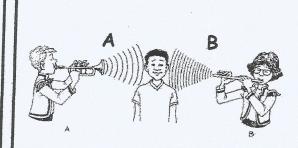
19. longest wavelength? \_\_\_\_\_shortest wavelength? \_\_\_\_


20. IDENTIFY and LABEL each wave below.


highest frequency


lowest frequency


highest amplitude


lowest amplitude











21. Which wave has more energy?

Explain your reasoning,